Invariant measures for piecewise convex transformations of an interval

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE EXISTENCE OF INVARIANT MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS ( l ) BY A . LASOTA AND

A class of piecewise continuous, piecewise C transformations on the interval [O, l] is shown to have absolutely continuous invariant measures.

متن کامل

Invariant Measures for Generalized Gauss Transformations

We find the explicit expression of the absolutely continuous invariant measure for the p-numerated generalized Gauss transformation Tp(x) = { p x }. It allows us to generalize a series of results for the canonical continued fractions, such as Khinchin’s constant and Lévy’s constant. 1. The Invariant Measure The Gauss transformation T (x) = { 1 x } has been well studied. It has a strong relation...

متن کامل

Invariant Measures for Certain Linear Fractional Transformations Mod 1

Explicit invariant measures are derived for a family of finite-toone, ergodic transformations of the unit interval having indifferent periodic orbits. Examples of interesting, non-trivial maps of [0, 1] for which one can readily compute an invariant measure absolutely continuous to Lebesgue measure are not easy to come by. The familiar examples are the Gauss map, the backward continued fraction...

متن کامل

Absolutely Continuous, Invariant Measures for Dissipative, Ergodic Transformations

We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these. Introduction Let (X,B, m, T ) be an invertible, ergodic measure preserving transformation of a σ-finite measure space, then there are no other σ-finite, m-absolu...

متن کامل

Poisson-Dirichlet And Gem Invariant Distributions For Split-And-Merge Transformations Of An Interval Partition

This paper introduces a split-and-merge transformation of interval partitions which combines some features of one model studied by Gnedin and Kerov [12, 11] and another studied by Tsilevich [30, 31] and Mayer-Wolf, Zeitouni and Zerner [21]. The invariance under this split-and-merge transformation of the interval partition generated by a suitable Poisson process yields a simple proof of the rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2002

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm152-3-5